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We study the fluctuations arising from the discrete particle nature of the reac- 
tants in chemical processes, which we term discrete Jluctua'ions. It is shown how 
the magnitude of discrete fluctuations is formally obtained from the Van Kam- 
pen Q-expansion of the master equation for the process in question. It is 
claimed that discrete fluctuations are, at times, an important factor in deter- 
mining the anomalous kinetics of reaction systems. We specialize to diffusion- 
limited reactions in systems below their upper critical dimensionality. Some 
variations of the two-species annihilation process A + B -* inert, as well as some 
other examples, are presented and analyzed. Many of these examples prove our 
point about the dramatic influence of discrete fluctuations on the reaction 
kinetics. Our theoretical scaling predictions are backed by extensive Monte 
Carlo simulations. 

KEY WORDS: Reaction kinetics; diffusion-limited reactions; two-species 
annihilation; Van Kampen's ~2-expansion; discrete fluctuations. 

1. I N T R O D U C T I O N  

T h e  a n o m a l o u s  k ine t ics  of  r eac t i ons  in sys tems  tha t  c a n n o t  be desc r ibed  by 

mean- f i e ld  ra te  e q u a t i o n s  h a v e  a t t r a c t e d  an  eve r - inc rea s ing  in te res t  in 

recen t  y e a r s J  ~ 9) A n o m a l o u s  k ine t ics  resul t  f r o m  m a n y  dif ferent  causes.  

A m o n g  the  m o s t  s tud ied  cases  a re  d i f fus ion- l imi ted  reac t ions .  (4 9/ In  low 

space  d i m e n s i o n a l i t i e s  r e a c t i o n  rates  b e c o m e  a n o m a l o u s  due  to the  dif- 

fusive m o t i o n  of  the  r eac t an t s  a n d  because  of  v a r i o u s  sources  o f  d o m i n a n t  

f luc tua t ions ,  w h i c h  a re  d i s r e g a r d e d  in the  mean- f i e ld  ra te  e q u a t i o n s .  M u c h  

phys ica l  ins igh t  was g a i n e d  f r o m  re sea rch  on  even  the  s imples t  r e ac t i on  

schemes ,  such as i r revers ib le  one-spec ies  ann ih i l a t i on ,  (5'7't~ A + A  ~ inert ,  
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or two-species annihilation, (5'6) A + B--+ inert. From these we have learned 
that basically two ingredients suffice to fully explain the anomalous reac- 
tion rates. One is the scaling of the volume explored by a reactant particle 
wi tht ime,  which is provided by random walk theory (diffusive motion). 
The other is the existence of spatial fluctuations in the concentration of the 
reactants, as emphasized especially by Kang and Redner.(~l) 

The purpose of this paper is to draw attention to yet another possible 
source of fluctuations, which, though unimportant in the simple systems 
mentioned above, are indispensable for the understanding of the 
anomalous kinetics of some other, equally simple, systems. These are the 
fluctuations arising from the discrete nature of the reactant particles. We 
term them, for brevity, discrete fluctuations. Discrete fluctuations play an 
important role in determining the kinetics of various reactions. We define 
discrete fluctuations and show how to calculate their magnitude using Van 
Kampen's s (3) in Section 2. The question of the relevance of dis- 
crete fluctuations is discussed in Section 3, and some simple examples of 
such cases are presented and analyzed in Sections 3 and 4. Finally, a 
further recent example (of n-species annihilation (t2) is recalled, and a dis- 
cussion is included in Section 5. 

2. D I S C R E T E  F L U C T U A T I O N S  A N D  T H E  
V A N  K A M P E N  Q - E X P A N S I O N  

Discrete fluctuations are those fluctuations arising from the particlelike 
nature of the reactants. In order to clarify this statement, suppose that all 
the physical conditions required for the validity of a mean-field rate 
equation are met, but drop the assumption that we can use a continuous 
concentration variable rather than the actual number of particles in each 
given state. The fluctuations arising, as a result, are discrete fluctuations. 

As a simple example consider the irreversible one-species annihilation 
process (5,7,m) 

A + A ~ inert (2.1) 

A mean-field rate equation describing the process is 

8A(t) = - - k .  c2(t) (2.2) 

where CA(t ) is the concentration of A particles at time t, k is the rate at 
which (2.1) occurs, and the overdot denotes differentiation with respect to 
time. If we keep all the physical conditions that are assumed in writing 
Eq. (2.2), but require a description of the system in terms of NA, the num- 
ber of A particles, we would have to replace the rate equation by a master 
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equation on the probability P(NA; t) of having NA of the A particles at 
time t, 

0P(NA;~?t t )=  f2k" [~ NAs + 2 NAf2+I P(NA + 2; t) 

1 NA N A -  1 P(NA; t)] (2.3) 
2 Q  f2 

Here (2 is the volume of the system. The first term in the rhs denotes the 
rate of increase of P(NA; t) as a result of a single A+A--+inert reaction 
taking place, and is proportional to the probability of having NA + 2 par- 
ticles. The second term represents the rate of decrease of P(NA; t) due to a 
single reaction taking place. From P(NA;  t) derived from Eq. (2.3) one can 
calculate the expected NA(t), which turns out to coincide, as required, with 
CA(t) f2. But we also find fluctuations of NA(t) around its expected value, 
which are the result of the discrete nature of the system. 

At this stage one might become discouraged because of the complexity 
of the master equation (2.3). Luckily, there exists an elegant formal 
procedure for systematically approximating the solution of Eq. (2.3). This 
is known as the Van Kampen Q-expansion. Using Van Kampen's 
notation, ~ we now sketch the ~-expansion for the one-species annihilation 
process. The number of particles is rewritten as 

U A = g2~b + ~ ~ (2.4) 

The variable ~b will later be shown to correspond to the concentration 
cA(t), and ~ is a measure for the variations from this function. The scaling 
of these fluctuations with x / ~  is a fact justified a posteriori by the con- 
sistency of the expansion. The probability function P ( N  A ; t) is replaced by 
H(~; t). Thus, from (2.4), 

-~- OH 0P _ 0 H  ~ q ~  (2.5) 
NA 0t 0~ 

Also, 

0N A •P = , , ~  0P _ 0 H  (2.6) 
0~ 63NA t 63NA t ~ 

This is used to Taylor-expand P ( N  A + 2; t) around P(NA; t). Upon making 
this expansion and the variables substitution, one gets an equation 
involving powers of g?k/2 (k = 1, 0, -- 1, --2,...). Collecting like powers of Q, 
one finds that the coefficients of the terms diverging like g?~/2 yield 

q~ = -k .  ~b 2 (2.7) 
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This is exactly like the mean-field rate equation (2.2) for cA(t), showing 
that ~b(t) is indeed identified with cA(t ). The coefficients of the terms with 
~2 ~ yield a Fokker-Planck equation: 

as/_ 2k. (~H) + (~g)  (2.8) 0t k-~-~ 

We have now reached our goal. Equation (2.8) enables us to calculate the 
expected value of the discrete fluctuations. Indeed, multiplying (2.8) by 4 2 
and integrating over 4, we have 

#(~2}/Ot = -2k .  ~b(~ 2 } + 2k. ~2 (2.9) 

which together with (2.7) yields 

< ~2 } = 2~(1 - ~3/~(0)3) -t- < ~2(0) ) (2.10) 

Recalling the meaning of ~b and ~ from Eq. (2.4), we see that this can be 
interpreted in terms of the fluctuations in the particle number and the 
expected particle number itself, 

((NA-- (NA}) 2) 

= ~ ( N A } { I - - [ ( N A } / ( N A ( 0 ) } ]  3}+([-NA(O)-(NA(O)}]  2} (2.11) 

To summarize, consideration of the discrete nature of the particles 
leads to the prediction of fluctuations in the expected particle number, 
which are not predicted by the mean-field rate equations. The Van Kam- 
pen Q-expansion provides us with a formal way of evaluating these discrete 
fluctuations. In the following sections we will discuss reaction schemes 
where discrete fluctuations play a significant role in determining the 
kinetics of the system. 

It is worth mentioning the usefulness of expressing discrete fluc- 
tuations as a function of the expected number of particles, rather than as 
an explicit function of time as in Eq. (2.11). The reason is that the explicit 
time scale is very sensitive to other fluctuation sources, such as the diffusive 
motion of the particles (which was not discussed in this section), so that it 
is more meaningful to represent discrete fluctuations as a function of the 
actual concentration, without bothering about the proper time scale. 

3. THE RELEVANCE OF DISCRETE FLUCTUATIONS:  S O M E  
BASIC EXAMPLES 

We have seen that discrete fluctuations in the particle number always 
exist. The question is, then, when do these fluctuations become important 
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to the extent that they influence the reaction rate significantly? It is hard to 
answer this question in a general way. However, in many cases the answer 
is self-evident. Van Kampen's f2-expansion provides us with a formal way 
for evaluating the magnitude of discrete fluctuations. In some cases it is 
enough to compare these discrete fluctuations to other fluctuation sources, 
such as spatial fluctuations in concentration, thus obtaining the answer to 
whether discrete fluctuations are relevant or not. We recall (5"6) in the 
following the example of two-species annihilation, for which spatial fluc- 
tuations in concentration play the most significant role. We then introduce 
some variations to this process, for which discrete fluctuations become as 
relevant as, or even more relevant than, spatial fluctuations in concen- 
tration, and study these models. 

3.1.  T w o - S p e c i e s  A n n i h i l a t i o n  

The irreversible process of two-species annihilation 

A + B ~ inert (3.1) 

is a good example showing the essential physical considerations that are 
usually sufficient to predict the anomalous kinetics of a diffusion-limited 
reaction. Let us reproduce/5"11) the reasoning done for the solution of this 
process. Consider the case in which there are initially the same concen- 
trations of A and B particles, cA(0) = cB(0) = c(0). We focus our attention 
on a domain of linear size l. In this domain there are initially of the order 
of C(0) -~- [C(0) l d] 1/2 of the A and B particles. The uncertainty in the num- 
ber of particles is due to their random distribution. These fluctuations are, 
in fact, spatial fluctuations in concentration. After a time of the order t ~ l 2, 
the particles in the domain would have had the chance to mix and interact 
with each other. This scaling of time with length is due to the diffusion 
mechanism, and t is a measure of the time that it would take a random 
walker to get across the domain of linear size l. After this time t, then, there 
would be left in the domain of the order of [c(0) la]  ~/2 particles of the 
species that was initially in the majority. The concentration would then be 

c( t )  ~ [c(0)Id]i /2/ ld~ [C(0)] ~/2 t -a/4 (3.2) 

This is to be compared with the prediction of the mean-field rate equations 
that c( t )  = 1 / [ k t  + l /c(0)].  The decay of the concentration is anomalous for 
low space dimensionalities, and the mean-field limit is reached when d =  4 
(upper critical dimensionality). Note that in the derivation of (3.2) the 
conservation law for the particle number difference 

Na(t)  -- NB( t )  = const (3.3) 
has implicitly been used. 



320 Ben-Avraham 

Let us now analyze discrete fluctuations and see why it was not 
necessary to include them in the reasoning leading to (3.2). We write a 
master equation for P(NA, NB; t), the probability of having NA of the A 
particles and NB of the B particles at time t, 

OP(NA, NB; --1 NANB t ) = Q k "  (EAEB )--A---A-P(NA NB" t) (3.4) 
~?t s z ~ z  ' ' 

Here E A is a raising operator defined by E A f ( N A ) = f ( N  A + l), and EB is 
the analogous raising operator for NB. We now apply the Van Kampen 
formalism and substitute 

NA = Qq~A + ~ ~A (3.5a) 

Ns = oCB + ~ is  (3.5b) 

and 

P(N A, NB; t )=  H({A, {B; t) (3.5C) 

After going through the stages sketched in Section 2, we find that the 
coefficients of the singular ~1/2 terms give the mean field rate equations 

CA ~r --k CACB (3.6) 

From the f2 ~ terms we get the Fokker-Planck equation 

- - = k -  (r + CA{U) H 0, a72A U.  

1 (0-~A "~-BB)2 ~bA Cu H ] 2 (3.7) 

Finally, using this Fokker-Planck equation, we get equations for the 
fluctuation moments <{m>. The solution of the equations for the second 
moments can be cast into the form 

I [l_(<Na>lal (3.8a) <(NA-- <NA>)Z> =3  <NA> \NA(0)/  J 

and 

<(NA- <NA >)2 ) = <(NB- <NB >)2> = <(NA- <NA >)(NB- <NB>)> 

(3.8b) 

when we assume, for convenience, that all the initial fluctuations are zero. 
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Indeed there develop discrete fluctuations, as anticipated. However, from 
Eq. (3.8b) we see that 

( [(NA - NB) -- ((NA } -- ( N 8 ) ) ] 2  } = 0 (3.9) 

This means that there are no fluctuations to the conservation law, Eq. (3.3). 
Recall that this is precisely the conservation law used in deriving the 
anomalous reaction rate of the system, Eq. (3.2). Thus, we are allowed 
to disregard discrete fluctuations because they do not affect any of the 
reasoning leading to (3.2). 

Actually, the result (3.9) is trivial, and it could be derived by observing 
that the particle number difference N A - -NB is locally conserved, i.e., it is 
conserved for each single reaction that takes place, and therefore it cannot 
have any fluctuations. Nevertheless, we applied the Van Kampen formalism 
to provide one further example, and to give evidence of its accuracy. 

3.2. Variations of the Two-Species Annihilation Process 
Affected by Discrete Fluctuations 

Consider now the process (~2) 

A + B -~ either A or B (3.10) 

where the two possibilities can occur with equal probabilities. If we let each 
of the two possibilities occur with the same rate k as in the original process, 
Eq. (3.1), it is represented by the master equation 

" = NA NB p N , OP(NA'NB't) Ok . [ (EA- -1 )+(EB- - I ) ] - f f -~ -  ( A, NB't) (3.11) 
Ot 

The rate equations for this process are exactly the same as Eq. (3.6) for the 
A + B --, inert process. Thus, for example, 

(NA(t) } -- (NB(t) } = const (3.12) 

is a conservation law (derived from the rate equations) analogous to (3.3). 
However, note that the conservation law (3.12) is stated in terms of the 
average quantities (NA }, (NB }. In fact, the particle number difference for 
the process in Eq. (3.10) is merely globally conserved, i.e., only on the 
average. Whenever a single A + B-~ A or A + B ~ B reaction takes place, 
the particle number difference N A -  NB changes by + 1 or - 1  (depending 
on which of the two possibilities occurs). Thus, N A -  NB is described by a 
perfect one-dimensional random walk, and 

( [NA(t ) -- NB(t)] 2 } = number of reactions = N(0) - N(t) (3.13) 

822/48/I-2-21 
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where N(t) = NA(t) + NB(t) is the total number of particles in the system at 
time t. The Q-expansion performed on Eq. (3.11) confirms these results. 

If  we try now to argue along the same lines as for the A + B --, inert 
process (Section 3.1), we should have to consider the discrete fluctuations 
in the conservation law ~N A) - ~ N ~ ) =  const. Consider, again, a domain 
of linear size l. After a time t ~ l 2 the particles in the domain would have 
reacted with each other. Since NA--NB is conserved (though only on the 
average), we still expect a contribution from spatial fluctuations in concen- 
tration of the order of IN(0) ]  ~/2. In addition, discrete fluctuations in 
NA -- NB would make a contribution of the same order of magnitude. Thus, 
the decay law for concentration will not differ qualitatively from (3.2). 
However, discrete fluctuations become as important  as spatial fluctuations 
in concentration and their effect is measurable. A trivial effect, due to dis- 
crete fluctuations, is that starting with the same initial number  of A and B 
particles in the system, the final state would consists of the order of 
l-N(0)] ~/2 particles of one of the species, as opposed to the final state of the 
equivalent A + B ~ inert process, which would be depleted. The effect of 
discrete fluctuations is demonstrated in Fig. 1. This is a schematic plot of 
N(t) and N A ( t  ) - -  NB(t ) as a function of the number of reactions up to time 
t. The number  of B particles is proportional  to the gap between the two 

N(O] 

W 
.,A 

I-- 

~ ' 0  

U. 
O 

~5 
Z 

NA(t) + NB(t) 

2NB(t) 

\ 
N A [ t )  - N B ( t )  

o N(O) 
NO. OF REACTIONS 

Fig. 1. Schematic representation of the A + B --, either A or B process. Shown is the total 
number of particles N(t) = NA(t) + NB(t) and the particle number difference NA(t ) -  NB(t) as 
a function of the number of reactions. The process ends when the two curves meet at S~ [or  
when NA(t)--NB(t)--N(t)]. For the A+B--- , inert  process NA(t)-NB(t)=O, and the 
process goes on until the totally depleted state S 2 is reached. 



Discrete Fluctuations and Kinetics of Reactions 323 

curves, and the process ends when the two curves cross, with the system 
consisting of only A particles. Another possibility is that the process ends 
when the curve representing NA(t) - -NB(t )  crosses the curve of - N ( t ) .  In 
this case the final state of the system will consist of only B particles. Only 
the first possibility is shown in Fig. 1. 

A more dramatic effect of discrete fluctuations is found in the two- 
species annihilation process with a correlated initial distribution (51 of par- 
ticles. Suppose that in the initial state the particles are deposited in pairs. 
That  is, pairs of A and B particles (occupying adjacent sites) are randomly 
distributed in a lattice. If the process A + B  ~ i n e r t  takes place, the 
argument leading to Eq. (3.2) fails. In a domain of linear size l there are 
initially equal amounts of A and B particles. After a time t ~ l 2 there is left 
an amount  of particles of the order of unity. Thus, for the A + B ~ inert 
process with correlated initial conditions 

c(t) ~ 1/ld~ 1/t j/2 (3.14) 

In contrast, consider the A + B--* either A or B process with correlated 
initial conditions. After a time t ~ l 2 there would be left in the domain not 
of the order of unity, but of the order of [c(0) l d] 1/2 particles of one of the 
species, generated by the discrete fluctuations in the particle number 
difference. Thus, 

c ( t )  ~ [c(O)] 1/2/t~/4 (3.15) 

Discrete fluctuations in concentration dominate the process A + B ~ either 
A or B with correlated initial conditions, to the extent that the decay law 
for the process is qualitatively different than that for the analogous 
A + B ~ inert process. Numerical results of computer  simulations of the 
various cases discussed above will now be presented. 

3.3. N u m e r i c a l  Resul ts  f o r  T w o - S p e c i e s  A n n i h i l a t i o n  

In order to test the various predictions made above, we performed 
several Monte Carlo simulations for the processes A + B  ~ i n e r t  and 
A + B--, either A or B with totally random as well as with pair-correlated 
initial distributions. The simulations of these four cases were performed on 
a one-dimensional lattice. A particle is represented by an occupied site on 
the lattice, and its diffusion is simulated by a random walk with a 
probability 1/2 of stepping to either one of the adjacent sites. A reaction 
takes place immediately upon collision of an A and a B particle. The two 
particles are then removed from the system for the A + B ~ inert process, 
whereas only one of the particles is removed, at random, for the 
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A + B ~ either A or B process. With each particle move, time is increased 
by 1/N(t). We used periodic boundary conditions. 

In Fig. 2 we plot the results for all four cases as obtained from 
some typical runs. The lattice consists of 1,000,000 sites, and 
N A ( 0 ) = N B ( 0 ) =  150,000. Shown is ln[NA(t)]  against In t. The case of 
A + B ~ inert with a totally random initial distribution was used as a test 
for the reliability of our simulations. Its simulations show good agreement 
with results presented in the past (5'11) and with the theoretical prediction of 
Eq. (3.2). The case of A + B ~ either A or B with a totally random initial 
distribution shows almost the same results. Curiously enough, the combined 
effect of spatial fluctuations in concentration and of discrete fluctuations is 
very much like that of fluctuations in concentration alone, even quan- 
titatively. 

The case of A + B ~ inert with a pair-correlated initial distribution 
shows the expected decay of concentration going as 1/t m [Eq. (3.14)]. 
This is due to the absence of spatial fluctuations in concentration in the 
initial state. This situation is preserved as the process goes on by virtue of 
the conservation of the particle number difference. In contrast, in the case 
of A + B ~ either A or B with a pair-correlated initial distribution, in spite 
of the absence of spatial fluctuations in the initial state, concentration 
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Fig. 2. Simulation results of the various two-species annihilation processes discussed in the 
text. Shown is In NA(t) against In t for the A + B ~ inert process with (Q)  a totally random 
and ( �9  with a pair-correlated initial distribution, and for the A + B ~ either A or B process 
with ( �9 ) a totally random and ( A ) with a pair-correlated initial distribution. Solid lines with 
slope - 1 / 2  and - 1 / 4  are shown for comparison. 
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decays as 1/t  1/4. Because of discrete fluctuations, the particle number dif- 
ference is no longer locally conserved, resulting in the growing of spatial 
fluctuations as the process evolves. This is in agreement with our predic- 
tion, Eq. (3.15), and proves that discrete fluctuations can dominate the 
kinetics of the system. Indeed, discrete fluctuations play here the same role 
as spatial fluctuations in concentration when the initial distribution is 
totally random. 

4. THE " C O N V E R S I O N  PROCESS'"  

Consider now the irreversible process in which upon reaction one of 
the species "converts" into the other 

A + B --* either 2A (prob. p) or 2B (prob. q = 1 - p) (4. i ) 

We can imagine A and B as representing different phases of a substance. 
For example, A could represent a water molecule and B a vapor molecule. 
Then Eq.(4.1) could describe a process in which a vapor molecule 
impinges on the water surface, with the result that it either sticks (with 
probability p) or bounces, knocking another water molecule out to the 
vapor phase (probability q). In the most general case the probabilities p 
and q might vary and have a dependence on parameters such as NA(t ) or 
the interface shape, etc. Of course, Eq. (4.1) can hardly be counted as a 
model for phase transitions, since many other micromechanisms by which 
the equilibrium between the two phases could be maintained have not been 
taken into account. We merely suggested a possible interpretation of (4.1) 
which might be useful to keep in mind. Surely, one could find some other 
interpretations of (4.1) as a sociological or a biological process. 

The master equation is 

c?P(NA, N B  ; t) = O k .  [ p ( E  A ~E B --  1) + q ( E A E ~  1 -- 1 )] 
Ot 

NA NB 
X - - - -  P(NA, NB; t) 

f2 f2 
(4.2) 

The Q-expansion analysis yields the rate equations 

~A(t) = - ~ B ( t )  = - k .  (p  - q) cA(t)  cB(t) 

For p and q constants, we get for the fluctuations 

(4.2) 

( ( N A -  (NA})  z } -- (Ng( t )  } (1 (NA(t) }'] 
[p-- q~  NA(0) / '  P r q (4.4a) 
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and 

( ( N A -  (NA>)2> = <(NB-- (NB >)2> = - - ( ( N A -  (NA > ) ( N B -  (NB>)> 

(4.4b) 
Note that, from (4.4b), 

( { [ N A ( t ) + N B ( t ) ]  -- [<NA(t)> ~- (NB(t)>]}2> = 0  

in agreement with the obvious local conservation of NA(t )+NB(t ) .  
Actually, the "conversion" process can be analyzed without the aid of the 
~2-expansion. We observe that upon each new reaction, Ng(t) either 
increases by 1 (with probability p) or decreases by 1 (with probability q). 
Thus, NA(t ) is described by a biased random walk, (~3) whose properties are 
well understood. In the case that p and q have a dependence on NA(t), the 
process maps to the much studied problem of a random walker in a poten- 
tial field (e.g., Ref. 14). 

The relevance of discrete fluctuations to the kinetics of the "conver- 
sion" process is most easily shown for the simplest case, where p = q = 1/2. 
In this case NA(t ) performs an unbiased random walk with absorbing 
boundary points at NA(t ) = 0 and at NA(t)= NA(0)+ NB(0). Clearly, the 
system evolves to a final state consisting of particles of only one of the 
species (A or B). In contrast, the mean-field rate equations for the "conver- 
sion" process with p = q  = 1/2 are 

('a(t) = 3B(t) = 0 (4.5) 

predicting that the initial state is stationary. Thus, we have presented an 
extreme example where discrete fluctuations are indispensable for the 
evolution of the system, and the process would not occur were it not for 
discrete fluctuations. 

5. N - S P E C I E S  A N N I H I L A T I O N  A N D  D I S C U S S I O N  

While the examples of the A + B --* either A or B and the "conversion" 
processes presented above demonstrated the relevance of discrete fluc- 
tuations to the kinetics of reactions, one might get the erroneous 
impression that a random choice between possible reaction chanels is 
essential. Also, though the Van Kampen O-expansion was suggested as a 
formal method for the evaluation of discrete fluctuations, we could do as 
well with a simple-minded approach for each of our examples. We recall 112) 
now the process of n-species annihilation as a further, nontrivial example of 
the effect of discrete fluctuations. There is no random choice between reac- 
tion channels in this process; nevertheless, discrete fluctuations are relevant 
to the kinetics of the system. Moreover, we were not able to find any sim- 
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pie-minded way for deriving the magnitude of the discrete fluctuations, but 
these were straightforwardly derived using Van Kampen's Q-expansion. 

The n-species annihilation process involves a system with n species 
A1, A2,..., A n initially present with equal concentrations. Any two different 
species react irreversibly 

Ai + Aj--+ inert, i r  (5.1) 

For n = 2 the process degenerates to the two-species annihilation process, 
A + B ~ inert (Section 3). For  n--, oe, the restriction that a species does 
not interact with itself is neglected, and the process parallels the one-species 
annihilation process, A + A ~ inert (Section 2). Thus, for the range of finite 
n > 2 ,  the model interpolates between these two important reaction 
schemes. A global conservation law can be derived from the mean-field rate 
equations 

I~I (CAt_ CAj)/CnAI 2 ~. const (5.2) 
j= 2 

A1 is arbitrarily chosen and Eq. (5.2) can in fact be rewritten, singling out 
any one of the At. A simple-minded argument based on this conservation 
law and which invokes spatial fluctuations in concentration (as for the two- 
species annihilation process in Section 3.1) does not yield satisfactory 
results, and one is led to consider the effect of discrete fluctuations. 

The physical picture is as follows. The n species in a domain of linear 
size l react until one of the species is eliminated, leaving only n -  1 species 
in the domain. By analyzing discrete fluctuations (using Van Kampen's 
Q-expansion), we realize that after one of the species is eliminated there 
remain in the domain of the order of [CA(0 ) ld] ~n-2)/~n- ~1 particles of each 
of the remaining n -  1 species. Note that for n > 3 this is larger than the 
particle number difference 

NAg(0) -- Nat(0) ~ I-CA(0) l d] t/2 

arising from spatial fluctuations in concentration. Now the n -  1 remaining 
species react until another species in the domain is eliminated. Substituting 
n -  1 for n, we see that there would then remain of the order of 

I-CA(0 ) Id][(n-2)/(n 1)](n-3)/(n 2)= [CA(0) ld](n-3)/(n 1) 

particles of the n - 2  remaining species. The same reasoning goes on until 
we are left with only three species in the domain. Then, for the first time, 
spatial fluctuations in concentration become of the same order of 
magnitude as discrete fluctuations. By the time the third species is 
eliminated, we are left (by either kind of fluctuation-dominated 
mechanism) with of the order of [CA(0)la] 1/~n ~) particles of each of the 
remaining two species. Now, for the last stage, spatial fluctuations are the 
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only relevant ones, and we are left with of the order  of  [CA(0)ld]~/2/n-l) 
particles of  the last species in the domain.  Since the whole process 
described above takes place at a time t ~ l 2, we have 

C(t)~c(O) 1/2(n ~)t (d/Z)[ 1 1/2(n- 1)] (5.3) 

This was confirmed by extensive numerical  simulations. Equat ion  (5.3) 
interpolates, as expected, between the known results for one-species 
annihilation (for n ~ ~ )  and two-species annihilation (for n = 2). 

In conclusion, we have emphasized the role of discrete fluctuations in 
determining the anomalous  kinetics of reaction processes. We showed how 
the Van K a m p e n  (2-expansion provides us with a formal elegant way for 
evaluating their order  of magnitude.  Some simple examples of processes in 
which discrete fluctuations are relevant were presented and studied in 
Sections 3 and 4. We also reviewed the n-annihilation process, which is a 
nontrivial  example of a case where discrete fluctuations are highly relevant, 
and for which Van Kampen ' s  ~2-expansion proves to be most  useful in 
providing us with their order  of magnitude. One of  the mos t  interesting 
open questions is to find a rule for deciding when discrete fluctuations are 
relevant and when can we safely ignore them. 
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